Jumat, 30 November 2012

Materi KIMIA kelas XI semester gasal


 MATERI KIMIA KELAS XI SEMESTER GANJIL
BAB 1 Struktur Atom, Sifat Periodik Unsur, dan Bentuk Molekul
Teori Atom Niels Bohr
Elektron – elektron mengelilingi inti atom hanya dalam lintasan yang memenuhi syarat teori kuantum, yang diperbolehkan hanyalah lintasan – lintasan dimana elektron memiliki momen sudut yang merupakan kelipatan dari harga h/2π (h = tetapan planck). Lintasan itu dinamai kulit – kulit elektron.
Dalam kulit tersebut, elektron berada pada tingkat energi tertentu serta berada pada keadaan stasioner, artinya tidak memancarkan energi.
Energi akan dipancarkan atau diserap jika elektron berpindah dari satu tingkat energi ke tingkat energi lain, sesuia dengan persamaan ∆E = hλ

Teori Atom Modern (Mekanikan Kuantum)
Teori atom modern ini dikembangkan berdasarkan menkanika kuantum yang disebut mekanika gelombang, dari Max Planck, de Broglie, Schrodinger, dan Heisenberg. Menurut teori ini dikenal dualisme sifat elektron yaitu sebagai materi dan sebagai gelombang. Elektron dalam inti bergerak mengelilingi inti sambil bergetar sehingga menghasilkan gerakan tiga dimensi. Oleh karena itu tidak mungkin menemukan posisi serta momentum yang pasti dari elektron. Yang dapat ditentukan adalah kebolehjadian menemukan elektron pada suatu titik pada jarak tertentu dari inti. Daerah dalam ruang di sekitar inti dengan kebolehjadian menemukan elektron disebut orbital.

Konfigurasi Elektron
Elektron mengelilingi inti pada lintasan tertentu yang disebut kulit elektron.
Satu kulit terdiri dari subkulit – subkulit.
Satu subkulit terdiri dari orbital – orbital.
Satu orbital dapat menampung maksimum dua elektron.
Jenis – jenis subkulit yang terdapat dalam atom :
Subkulit s (sharf), mengandung 1 orbital.
Subkulit p (prinsif), mengandung 3 orbital.
Subkulit d (diffuse), mengandung 5 orbital.
Subkulit f (fundamental), mengandung 7 orbital.
Urutan pengisian orbital mengikuti prinsip Aufbau, yaitu mulai dari orbital yang energinya paling rendah, sampai pada orbital yang energinya paling tinggi.
Urutan berdasarkan tingkat energi
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f .....dst
Urutan berdasarkan kulit
1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p 5d .....dst

Bilangan Kuantum
Bilangan kuantum utama (n)
Menyatakan tempat kulit elektron berlokasi.
Kulit K, n = 1
Kulit L, n = 2
Kulit M, n = 3, dst
Bilangan Kuantum Azimut (l)
Menyatakan tempat subkulit dimana elektron berlokasi.
Subkulit s, l = 0
Subkulit p, l = 1
Subkulit d, l = 2
Subkulit f, l = 3

Bilangan Kuantum Magnetik (m)
Menyatakan membagi subkulit menjadi beberapa orbital tempat elektron berlokasi dan arah orientasi orbital terhadap nilai orbital lainnya.
l = 0, m = 0
l = 1, m = -1 0 +1
l = 2, m = -2 -1 0 +1 +2
l = 3, m = -3 -2 -1 0 +1 +2 +3

Bilangan Kuantum Spin (s)
Menyatakan arah rotasi elektron dalam orbital. Dalam satu orbtal s = +1/2 dan s = -1/2

Penentuan Golongan dan Periode
Golongan A (blok s dan blok p)
nsx npy , maka n = periode, x + y = golongan
Golongan B (blok d)
nsx (n-1)dy , maka n = periode, x + y = golongan
Golongan Lantanida (6s2 4f1 sampai 6s2 4f14)
Golongan Aktinida ( 7s2 5f1 sampai 7s2 5f14 )

Bentuk Molekul (AXnEm)

E=((EV-X))/2
A = atom pusat
X = atom terikat ke atom pusat
E = domain elektron bebas
EV = elektron valensi atom pusat
n = jumlah DEI
m = jumlah DEB


BAB 2 Termokimia
Hukum kekekalan energi
” Energi tidak dapat diciptakan atau dimusnahkan, tetapi dapat diubah dari satu bentuk ke bentuk yang lain, atau energi alam semesta adalah konstan.”

Secara matematis hubungan antara energi dalam, kalor dan kerja dapat dinyatakan sebagai berikut:
ΔU = q + W

Persamaan diatas menyatakan bahwa perubahan energi dalam (ΔU) sama dengan jumlah kalor yang diserap (q) ditambah dengan jumlah kerja yang diterima sistem (w). Jika Kalor (q) masuk sistem maka kalor bertanda positif (+), sedangkan kalor yang keluar bertanda negatif (-). Kerja (w) yang dilakukan sistem (ekspansi), maka bertanda negatif (-), dan yang dilakukan lingkungan (kompresi) bertanda positif.

Contoh:
Suatu sistem menyerap kalor sebanyak 1000 kJ dan melakukan kerja sebanyak 5 kJ. Berapakah perubahan energi dalam sistem ini?
Jawab:
Karena sistem menyerap kalor, maka q bertanda positif, tetapi karena
sistem m elakukan kerja, maka w bertanda negatif.
ΔU= q + w
=100 kJ – 5 kJ
= 95 kJ

Eksoterm dan Endoterm
Reaksi kimia yang melepaskan atau mengeluarkan kalor disebut reaksi eksoterm, sedangkan reaksi kimia yang menyerap kalor disebut reaksi endoterm.
Q = m . c . ∆T
Qsampel = Qair + Qkalorimeter

Persamaan Termokimia
Persamaan reaksi yang mengikutsertakan perubahan entalpinya disebut persamaan termokimia. Nilai ΔH yang dituliskan pada persamaan termokimia disesuaikan dengan stokiometri reaksi. Artinya jumlah mol zat yang terlibat dalam reaksi sama dengan koefisien reaksinya.
Oleh karena entalpi reaksi juga bergantung pada wujud zat harus dinyatakan, yaitu dengan membubuhkan indeks s untuk zat padat , l untuk zat cair, dan g untuk zat gas. Perhatikan contoh berikut .

Contoh:
Pada pembentukan 1a mol air dari gas hidrogen dengan gas oksigen dibebaskan 286 kJ. Kata “dibebaskan” menyatakan bahwa reaksi tergolong eksoterm. Oleh karena itu ?H = -286 kJ Untuk setiap mol air yang terbentuk. Persamaan termokimianya adalah:
H2 (g) + 1/2 O2 (g) ——> H2O (l) ΔH = -286 kJ
Atau
2 H2 (g) + O2 (g) ——> 2 H2O (l) ΔH = -572 kJ
(karena koefisien reaksi dikali dua, maka harga ΔH juga harus dikali dua).

Entalpi Pembentukkan (∆Hfo)
Perubahan entalpi yang terjadi pada reaksi pembentukkan 1 mol suatu senyawa dari unsur – unsurnya, semua zat dalam bentuk stabil pada 25oC dan 1atm.

Entalpi Pembakaran (∆Hco)
Perubahan entalpi yang terjadi pada reaksi pembakaran 1 mol suatu zat dengan oksigen diukur pada keadaan standar. Pembakaran sempurna menghasilkan CO2 dan H2O.

Entalpi Penguraian
Reaksi penguraian adalah kebalikan dari reaksi pembentukan. Oleh karena itu, sesuai dengan azas kekekalan energi, nilai entalpi penguraian sama dengan entalpi pembentukannya, tetapi tandanya berlawanan.

Contoh:
Diketahui ΔHf 0 H2O (l) = -286 kJ mol -1, maka entalpi penguraian H2O (l) menjadi gas hidrogen dan gas oksigen adalah + 286 kJ mol-1
H2O (l) ——> H2 (g) + ½ O2 (g) ΔH = + 286 kJ

Perubahan Entalpi Berdasarkan Entalpi Pembentukan
Kalor suatu reaksi dapat juga ditentukan dari data entalpi pembentukan zat pereaksi dan produknya. Dalam hal ini, zat pereaksi dianggap terlebih dahulu terurai menjadi unsur-unsurnya, kemudian unsur-unsur itu bereaksi membentuk zat produk. Secara umum untuk reaksi:
m AB + n CD —–> p AD + q CB
ΔH0 = jumlah ΔH0 f (produk) - jumlah ΔH0 f (pereaksi)

Perubahan Entalpi Berdasarkan Hukum Hess
Banyak reaksi yang dapat berlangsung secara bertahap. Misalnya pembakaran karbon atau grafit. Jika karbon dibakar dengan oksigen berlebihan terbentuk karbon dioksida menurut persamaan reaksi:
C(s) + O2 (g) —–> CO2 (g) Δ H = – 394 kJ
Reaksi diatas dapat berlangsung melalui dua tahap. Mula-mula karbon dibakar dengan oksigen yang terbatas sehingga membentuk karbon monoksida. Selanjutnya, karbon monoksida itu dibakar lagi untuk membentuk karbon dioksida. Persamaan termokimia untuk kedua reaksi tersebut adalah:

C(s) + ½ O2 (g) —–> CO (g) ΔH = – 111 kJ
CO (g) + ½ O2 (g) —–> CO2 (g) Δ H = – 283 kJ

Jika kedua tahap diatas dijumlahkan, maka diperoleh:

C(s) + ½ O2 (g) —–> CO (g) ΔH = – 111 kJ
CO (g) + ½ O2 (g) —–> CO2 (g) ΔH = – 283 kJ
————————————————————————- +
C(s) + O2 (g) —–> CO2 (g) ΔH = – 394 kJ


BAB 3 Laju Reaksi

Laju reaksi adalah perubahan konsentrasi pereaksi persatuan waktu.
A + B --> AB

Orde Reaksi dan Persamaan Laju Reaksi

Percobaan Konsentrasi awal Laju Reaksi
a b
1 0,5 0,5 1,6 . 10-4
2 0,5 1,0 3,2 . 10-4
3 1,0 1,0 3,2 . 10-4

Orde [A] =
[0,5/1]x = 3,2 . 10-4/ 3,2 . 10-4
X = 0
Orde [B] =
[0,5/1]y = 1,6 . 10-4 / 3,2 . 10-4
Y = 1

maka
V = K . [B]

Faktor – faktor yang mempengaruhi laju reaksi :
Luas permukaan zat
Katalis
Konsentrasi
Suhu

t2 = (1/x)T2-T1/y . t1
x = faktor pengali
y = suhu berapa setiap kenaikan kali



BAB IV Kesetimbangan

Reaksi kesetimbangan adalah suatu reaksi dimana zat – zat produk dapat bereaksi atau terurai kembali membentuk zat – zta pereaksi.
N2 + 3H2 ↔ 2NH3
Faktor – faktor yang mempengaruhi kesetimbangan :
Konsentrasi
Tekanan dan Volume
Suhu
Katalis

Tetapan Kesetimbangan

mA + nB ↔ pC +qD

Kc¬ = ([C]^p [D]^q)/([A]^m [B]^n )

Hanya berlaku untuk zat yang berindeks gas dan larutan.

Jika reaksi dibalik, Kc’ = 1/Kc
Jika reaksi dikalikan, Kc’ = (Kc)x
Jika reaksi dijumlahkan, maka harga Kc harus dikalikan.

aA(g) + nB(g) ↔ pC(g) + qD(g)

Jika tekanan total adalah P, dan masing – masing tekanan parsial gas adalah pA, pB, pC dan pD, maka:
P = pA + pB + pC + pD

Tekanan parsial = (Mol gas tersebut)/(Mol seluruh gas) . Tekanan total

Kp = ((PC)^p (PD)^q)/((PA)^m (PB)^n )

Kp = Kc . (R T )(p+q) – (m+n)

Derajat Disosiasi

α = (Mol zat yang terurai)/(Mol zat mula-mula)

Tidak ada komentar:

Poskan Komentar